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Many proposed formation flying missions seek to advance the state of the art in 

spacecraft science imaging by utilizing dual-spacecraft precision formation flying (PFF) to 

enable a “virtual” space telescope. Using precision dual-spacecraft alignment, very long focal 

lengths can be achieved by locating the optics on one spacecraft and the detector on the 

other.  Proposed science missions include astrophysics concepts with spacecraft separations 

from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and 

the New Worlds Observer, and heliophysics concepts for solar coronagraphs and X-ray 

imaging with smaller separations (50m – 500m). All of these proposed missions require 

advances in guidance, navigation, and control (GN&C) for PFF. In particular, very precise 

alignment control and estimation is required for inertial pointing of the virtual space 

telescope to enable science imaging orders of magnitude better than can be achieved with 

conventional single spacecraft instruments. For many applications, the PFF dynamics is 

coupled through the GN&C system when utilizing relative ranging and position alignment 

sensor components not co-located with the respective spacecraft mass centers.   This work 

develops design architectures, algorithms, and performance analysis of GN&C systems for 

precision dual spacecraft inertial alignment. These systems employ a variety of GN&C 

sensors and actuators, including laser-based alignment and ranging systems, optical imaging 

sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as 

microthruster and precision stabilized platforms. A comprehensive GN&C performance 

analysis is given for a heliophysics dual-spacecraft PFF imaging mission concept. 

Nomenclature 

 

F
b  =   Gyro Measurement Bias for Follower Spacecraft 

Ab  =   Accelerometer Measurement Bias 

Fm  =   Follower Spacecraft mass 

q               =   Attitude Quaternion 

iFr  =   Follower Spacecraft Position relative to ith Central Body 

Ar  =   Accelerometer Location Vector relative to c.g. 

Er  =   Environmental Disturbance Action Point Location Vector relative to c.g. 

Tr  =   Thruster Location Vector relative to c.g. 

EFu  =   Environmental Disturbance Specific Force on Follower Spacecraft 

0TFu  =   Nominal Thruster Specific Forces for Control of Follower Spacecraft 

Ru  =   Leader/Follower Total Differential Specific Force 

Fthrustu ,
 =   Thruster Specific Force on Follower Spacecraft 

Lthrustu ,
 =   Thruster Specific Force on Leader Spacecraft 
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x  =   Relative Spacecraft Position 

FI  =   Follower Spacecraft Inertia 
refR  =   Nominal Relative Spacecraft Position 
m

F


 =   Follower Spacecraft Measured Acceleration  

R  =   Perturbed Relative Spacecraft Position 

F
v

 =   Gyro Measurement Noise for Follower Spacecraft 

Av  =   Accelerometer Measurement Noise 

i =   Gravitational Constant for ith Central Body 

  = Attitude Vector  

L = Leader Spacecraft to Astrometric Sensor boresight alignment angles  

G = Guide Star to Astrometric Sensor boresight alignment angles 

R
  = Relative Spacecraft Alignment Angles 

  = Angular Rate Vector  

solarf  =   Leader/Follower Differential Solar Pressure Specific Force  

pertf  =   Leader/Follower Differential Gravitational Perturbations 

GG Gravity Gradient Perturbation to Relative Spacecraft Alignment Dynamics 

 

I. Introduction 

ANY proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by 

utilizing dual-spacecraft precision formation flying (PFF) to enable a “virtual” telescope. The virtual telescope 

(VT) is formed by inertial alignment of an Optics (or Occulter) spacecraft (S/C) relative to a Detector S/C at a 

nominally fixed separation, depending on the telescope focal length.  A functioning telescope with very long focal 

lengths can be achieved in this manner using precision dual-spacecraft alignment. Proposed virtual telescope science 

missions include astrophysics investigations using formation flying spacecraft with separations from 1000 km to 

25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM)1 and the New Worlds Observer (NWO)2, and 

heliophysics concepts for solar coronagraphs, and x-ray imaging4 with smaller separations (50m – 500m)3. All of 

these proposed missions require advances in precision formation flying of two spacecraft. In particular, very precise 

inertial alignment control and estimation is required for inertial pointing of the “virtual” telescope to enable science 

imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. Figure 1 

shows the dual-spacecraft inertial (e.g. astrometric) alignment concept for a Leader/Follower formation flying 

architecture in which a single optical sensor mounted on a Follower S/C for tracking the Leader S/C relative to an 

inertial guide star target within the same sensor field of view.  


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Figure 1. Dual-Spacecraft Precision Inertial Alignment Sensing Architecture. 

 

This work develops the design of GN&C models and architectures necessary to implement onboard systems for 

dual-spacecraft PFF VT alignment. These systems employ a variety of GN&C sensors and actuators, including 

laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement 

units (IMU), as well as microthruster and precision stabilized image motion compensation systems. Previous work 

included a consider-state analysis method for evaluation of dual-spacecraft relative navigation and architectures for 

precise inertial alignment5. That work focused on transverse alignment only because those degrees of freedom are 

the most critical for precision GN&C for the VT. In section II we extend the analysis to include all translational and 

rotational degrees of freedom for a more generic VT specification including attitude and range states. For many 

applications, the PFF dynamics are coupled through the GN&C system when utilizing relative ranging and position 

alignment sensor components not co-located with the respective spacecraft mass centers. A systematic method for 

relating the basic VT science instrument specifications for image smear and depth of focus to the attitude and 

translational requirements is developed in section II. This method is then used to develop models for the relative 

position and alignment measurements from optical sensors to be used in the GN&C framework for control design. 

 

Section III includes a summary of a complete dynamics and control model framework for the development of 

alignment estimation and control algorithms. It includes a review of the basic equations for relative flight dynamics 

of two spacecraft flying in precise formation, based on previous studies by numerous authors5.  In this paper, we use 

Luquette’s formulation6-9 of the relevant dynamics in an inertial reference as a basis for the GN&C design and 

analysis. The section also summarizes relevant inertial sensor compenent models, as developed by Calhoun5. The 

models developed in sections II and III form a framework for full state alignment filter and control system design 

methods. Section IV provides an example GN&C design application for PFF of a proposed Heliophysics VT 

mission concept.  

II. Virtual Telescope (VT) Stability Requirements and Measurement Models 

It is difficult to develop deployable optical metering structures for large monolithic space telescopes (focal length 

> 50m) to achieve precise optics and detector alignment stability, within reasonable constraints on structural design 

for satellites. Precision formation flying of separate free-flying platforms for optics and detectors may be used to 

“replace” the optical metering structure, providing a stable platform for alignment of optics and detector. This 

establishes a “virtual” platform for telescope pointing and stability. This type of precision formation flight places 

unique requirements on the separated optics and detector platform dynamics and control, involving nine degrees of 

freedom (DoF) to fully characterize the image smear and stability of the depth of focus. The usual GN&C approach 

for a dual-spacecraft rendezvous, proximity operation, or constellation management, involves at most the relative six 

degrees of freedom between platforms since the inertial alignment of the two free flying vehicles it usually not 

relevant to formation flying. In this section, we develop the equations for the VT science imaging smear and depth 

of focus as a function of the nine DoF inherent in dual-spacecraft inertial alignment. This method is also applied to 
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the development of measurement models for optical alignment and ranging systems.  

A. VT Attitude and Translation Stability Requirements 

 

The first step in the GN&C design and analysis of the systems and architectures for VT formation flying is to 

derive requirements for the six attitude and three translational degrees of freedom for the dual-spacecraft formation 

as a function of the science imaging requirements at the detector. Figure 2 shows a breakdown of attitude and 

translational displacements starting from an ideal alignment of the detector and optics in a VT arrangement (shown 

in blue). The green frame represents translational displacement of optics off the line-of-sight from detector to target. 

The red frame represents rotational motion for both Optics S/C and Detector S/C.  The resulting shift in optics center 

of focus from detector center is shown in Figure 2. From inspection of Fig. 2 it can be deduced that the image 

stability, I


, in terms of image smear, yx ss , , and depth of focus, d , is expressed in terms of the spacecraft 

relative translational R


, and absolute rotational, OD 


,  DoF as,   
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Where the rotational operators,  


R , can be expressed in terms of a small angles using cross product operator, 
~

, 

  ]
~

[   IR


  .              (2) 

The function, )(f , is a mapping of focal plane image distortion (i.e. smear and depth of field) due to small rotations 

of the Optics platform,  OR 


. This effect on VT center of focus is illustrated in Fig. 2 by slight rotation of the 

optical imaging due to the Optics S/C rotation. This would in general be non-linear and dependent on the optics 

design, but could be linearized for small angles, as  
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~
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n

O

n
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Where the scaling factors, i , are derived from the optics design. These factors would be quite small for diffractive 

optics used for many x-Ray and UV optics in proposed VT applications.  Combining (2) and (3) into (1) provides a 

simplified representation that serves as a basis for error analysis of image distortion in terms of requirements for the 

attitude and translation DoF.  
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Equation 4 represents the coupling of the attitude and translational DoF for science imaging when the separated 

detector and optics components are not co-located with their respective spacecraft mass centers.  
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B. VT Optical Alignment and Ranging System Measurement Models 

 

The method used in Sec. A. to develop the science imaging requirements can also be used to model the relative 

position measurement for various optical (i.e. laser and camera) alignment and ranging components, illustrating this 

same 9 DoF coupling in the GN&C system design.  

A laser alignment (a.k.a. laser metrology) system utilizes a detector mounted on the Detector S/C to measure the 

lateral alignment offset of an illuminated spot from a collimated laser source mounted on Optics S/C10. A non-

collocated laser ranging system is also used to precisely measure the relative range. Then we can use Eq. (4) as a 

laser alignment and ranging measurement model by replacing appropriate variables,   
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Where L


, represents the measured displacements from laser spot detector center, in terms of alignment (a.k.a. 

centration) errors, 
yx ll , , and ranging errors, lr .  The variables, x

LB

x

B

x

L PPP
~

,
~

,
~

, represent the cross product operators 

for position vectors of the laser detector elements on the Detector S/C, the laser beacon elements on Optics S/C, and 

the relative position from laser detectors to beacons, respectively. For this model, i  is set equal to 1 for a fixed-

mounted laser beacon or set equal to 0 if beacon is collocated with the detector and a corner cube reflector, mounted 

on Optics S/C, servers as the virtual beacon. 

 
 

Figure 2. Detector Image Smear and Depth of Focus as function of Attitude and Translation. 
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An alignment camera (e.g. similar to the Advanced Video Guidance Sensor (AVGS)11,12) mounted on the 

Detector S/C  can be also be used to measure the relative S/C alignment by tracking laser beacons or retro reflectors 

mounted on the Optics S/C. The measurement model for this camera-based sensor can be derived as follows. From 

inspection of Fig. 3 it is deduced that the location of a tracked laser beacon, on Optics S/C, relative to the alignment 

camera image plane center, CBP


, is expressed in terms of the spacecraft relative translational R


, and absolute 

rotational, OD 


,  DoF as,   
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  '
.                                         (6) 

 

Then, the laser beacon spot centroid on the camera image can be expressed in terms of angles, yx  , .  
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III. VT Dynamics and Controls Framework for GN&C System Design 

A complete framework for the VT GN&C system design for PFF combines the optical sensor measurement 

models, given in Sec. II with dynamics and inertial sensor models provided in this section. The relative flight 

dynamics of two spacecraft in formation has been previously studied by numerous authors with applications to 

formation flying technology development 5. These generally fit into two categories: 1) formation dynamics in a close 

orbit to a single gravitational body (e.g. low Earth orbit) and 2) deep space applications. In this paper, we use 

Luquette’s formulation6-9 of the relevant dynamics in an inertial reference as a basis for the GN&C design and 

analysis. The dynamic equations of motion in a simplified form for the Optics S/C with respect to the Detector S/C, 

 

 
 

Figure 3. Alignment Camera line-of-sight as function of Attitude and Translation. 
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given herein, are a summary of the results from Calhoun5 with modifications to Luquette’s formulation to include 

additional gravitational bodies and to develop the equation parameters in terms of the Detector S/C reference for 

ease of implementation in autonomous Leader/Follower formation architecture. The dynamics model also includes 

three-axis attitude dynamics for both Optics S/C and Detector S/C.  

 

A.  VT Dynamics Model Formulation 

The translational dynamics of relative motion can be expressed in term of the relative position of Detector S/C 

with respect to the Optics S/C (Note that [I] represents the 3x3 identity matrix.).5 

 

      (8) 

 

Since these equations of motion for dual-spacecraft relative dynamics are developed in a general linear parametric 

form, they are suitable for design and evaluation of VT GN&C systems in a variety of applications. This model can 

be applied to control and estimation during all phases of a typical dual-spacecraft formation flying mission, 

including formation reorientation, initial formation alignment acquisition, and precision alignment operations. 

Formation flying for the virtual telescope in a Leader/Follower architecture is facilitated by using this form of the 

relative dynamics, since 1) the equations are expressed in an inertial reference frame and 2) the gravitational body 

ephemeris data are expressed relative to the follower reference. 

 

A linear time-invariant form of Eq. 8, is formulated by expressing the relative position state, x , in terms of a 

perturbed range state, R , and a nominal reference range, 
refR , between the two spacecraft for the virtual 

telescope configuration. 

  

R

refRx                                                                             (9) 

 

R

ref

GGRGGR uR   ,                                                           (10) 

where, GG , is a gravity gradient parameter matrix, expressed in terms of fixed parameters referenced to the 

follower.  
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 Equations (10) and (11) then form a linear time-invariant dynamics model for representation of the relative 

dynamics of dual-spacecraft formation when considering small displacements from a fixed relative reference 

trajectory. Approximations used to arrive at this final linear form are particularly applicable to a tight inertial-

configured dual-spacecraft formation (e.g. a virtual telescope) in a deep space environment. In these applications, 

 is nearly constant for short time periods associated with scientific observations. 

The complete dynamics model for the dual-spacecraft formation alignment GN&C will also include the rigid 

body attitude equations of motion, for both Detector and Optics S/C, as given in the general form of Eqns. (12) and 

(13). This results in a nine DoF state model which is coupled thru optical measurements of relative position, when 

considering sensor locations not coincident with respective spacecraft center of mass, as shown in Eqns. (5) and (6). 

 

qq 
~

2
1                                                                                 (12)                                                                          

   

  TII
    1

                                                                      (13) 

 

Measurement models for GN&C design should also include those for rate gyros, Eq. (14), and accelerometers, Eq. 

(15) 5. 
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 ,                                                                 (14) 

 

 
 

                                                  (15) 

 

The complete framework for the VT GN&C design includes dynamics models (Eq. 8-13), measurement models for 

optical sensors (Eq. 1-7), and inertial sensors (Eq. 14-15). 

 

 

IV. Case Study: GN&C Design for a Heliophysics Mission 

 

The modeling framework for GN&C design, as provided in Sec. II and III, was applied to an example problem to 

illustrate the performance trades inherent in dual-spacecraft PFF for VT applications. The dual-spacecraft PFF 

technology has many applications in various scientific investigations that require a long baseline VT, such as in high 

energy imaging1-4. One such proposed Heliophysics VT mission uses a photon sieve for high resolution solar 

imaging13. The photon sieve is a type of diffractive optics for producing narrowband focused images.  Achieving 

high resolution diffraction-limited imaging in high energy wavelengths requires long baselines, large precision 

manufactured optics, and precise alignment and range control stability13. The GN&C requirements representative of 

a milli-arc-sec level photon sieve application are given in Table 1. These rather precise requirements consequently 

place demanding specifications on GN&C architectures and sensors, particularly on optical metrology10 needed for 

precise alignment sensing. The specifications for the compliment of sensor and actuators used in this study are also 

provided in Table 1. These values represent the approximate levels needed to achieve the given science 

requirements.  

 

 

 

 

Table 1, Photon Sieve VT Alignment Requirements and Component Specifications 

 

Parameter Requirement (3)  Component Specification (3) 

Image Smear 6 microns  Laser Centration  30 microns 

Depth of Field 1 mm  Laser Ranging 0.5 cm 

S/C separation  200 m  Microthruster 5 N-sec (min Impulse) 

Pointing Stability  

(Optics S/C) 

5 milli-arc sec (Sun) 

10 arc-sec (roll) 

 Fine Sun Sensor 30 milli arc-sec 

Pointing Stability 

(Detector S/C)  

10 arc-sec  Star Tracker 6 arc-sec (transverse) 

30 arc-sec (boresight) 

 

The GN&C system design for the VT is an example of a distributed spacecraft mission involving control of two 

spacecraft that function together to form what is a single scientific measurement system. Depending on the 

placement of sensors and actuators on each spacecraft significant coupling could be present, as shown in the 

measurement and dynamics models provided in Sec. II and III. This implies different possible approaches to GN&C 

design.  

When the Detector S/C is the actively controlled element for PFF of the VT, the Optics S/C (Leader) would 

perform only 3-axis attitude determination and control, and the Detector S/C (Follower) would perform 3-axis 

attitude and 3-axis relative position control. A full-state estimator (9 DoF) that processes all measurements in a 

single process is used to consolidate the relative state estimation for control onboard the Detector S/C. Figure 4 

shows this representative sensor and actuator placement as one possible Leader/Follower architecture. Attitude 

control for the Optics S/C uses reaction wheels. A set of three-axis thrusters is included for momentum unloading 

since magnetic torqueing is not available in the target orbit (i.e. Sun-Earth libration point) for this mission. The 
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Detector S/C requires thrusters for relative position control so it is natural to use thrusters also for attitude control, 

thus avoiding the need for another set of components in the system. The Detector S/C is then configured with a full 

set of thrusters for 6 DoF control.  
   

This Leader/Follower architecture has two possible deficiencies. First, due to attitude coupling in the optical 

metrology measurements, a communication link is required to send attitude data from Optics S/C to Detector S/C for 

use in the full-state filter. This may suffer from possible uncertain transmission delay and timing synchronization 

across the inter-spacecraft communication link. Second, the thruster system for the Detector S/C is required to 

perform simultaneous 6-axis control. Providing a feasible thruster configuration that sufficiently decouples all axes 

for precision full-state control, may be difficult. The configuration shown in Fig. 4 includes a set of 24 thrusters in a 

6-axis decoupled configuration. An alternate partitioned architecture design that could address these concerns is also 

shown in Fig. 4. In this case, the control and estimation is partitioned among the two spacecraft and the optical 

sensors are located to avoid the multi-platform attitude coupling in the measurement process. The Optics S/C 

controls the 3-axis attitude and relative range, and the Detector S/C controls the 3-axis attitude and transverse 

alignment only. The decoupling of laser alignment measurements on the Detector S/C and laser ranging 

measurements on the Optics S/C is achieved by proper placement of respective optical elements. First, laser beacons 

for both centration and ranging measurements are pointed to corner cube reflectors, mounted on the opposing S/C, 

and the return beam is acquired at a collocated detector. The use of the corner cube removes attitude dependency in 

the return beam (i.e. i  terms in Eq. (5) are equal to 0). The remaining attitude dependency in Eq. (5) is eliminated 

by locating the corner cubes for laser alignment return (on the Optics S/C) in the x-y plane, and the corner cubes for 

the laser ranging return (on the Detector S/C) along the z axis. 

 

  
 

Figure 4 - Representative GN&C Architectures for the VT 
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The performance of these two alternative GN&C architectures were studied in a high-fidelity Matlab/Simulink 

model with the complete 9 DoF dynamics. For each case, the state estimation was implemented as an Extended 

Kalman Filter using a continuous form for state propagation and discrete measurement updates14. Measurement 

updates were performed sequentially to avoid numerical issues associated with computation of large matrix inverses. 

Separate PID controllers are used for attitude and relative position states. All measurement and actuator models 

include Markov processes to represent systematic errors within the control bandwidth, in addition to random noise at 

the levels provided in Table 1. This modelling approach facilitates assessment of the GN&C system’s performance 

robustness in the presence of unmodeled errors. 

Figure 5 shows lateral alignment error results from Monte Carlo simulations (400 cases), along with 95% 

confidence ellipses, for both GN&C architectures (Leader/Follower (blue), Partition (red)). Results indicate that 

transverse alignment errors are somewhat better for the Partition architecture. Decoupling of the laser centration 

measurement from the Optics S/C attitude, by the proper positioning the corner cube reflectors, results in improved 

transverse alignment observability in the Partition architecture. The Partition architecture performance meets the 

alignment requirements for the Photon Sieve application as listed in Table 1, illustrating the improvement obtained 

from model-based estimation over the performance of unfiltered laser sensor centration measurements. Figure 5 also 

shows the total impulse required for PFF over a 5 year mission for both architectures. Total impulse required to 

maintain alignment is significantly higher for the Leader/Follower architecture. The partitioned GN&C architecture 

uses about 35% less fuel because the Optics S/C, which performs range control, is half of the mass of Detector S/C. 

Performance comparison of these two alternative PFF architectures demonstrates the system trades that result from 

the measurement/state coupling and control actuator partitioning inherent in the dual S/C PFF GN&C system 

presented in this paper.  

Conclusions 

A general framework for dual-spacecraft PFF GN&C architecture design has been developed with specific 

application to VT missions. Development includes models for dynamics and measurement processes for systems 

that employ a variety of non-collocated sensors and actuators, including laser-based alignment and ranging systems, 

optical imaging sensors, and inertial measurement units (IMU), as well as microthrusters. A GN&C performance 

assessment is given for a representative Heliophysics PFF imaging mission concept. Two different GN&C 

architectures illustrate the potential trade-offs inherent in the choice of system architecture for this control design 

and mission concept.   

 

  
 

Figure 5 – Performance results of two representative GN&C architectures for the VT 
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